skip to main content


Search for: All records

Creators/Authors contains: "Reddi, Yernaidu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the synthesis, characterization and radical ring-opening polymerization (rROP) capabilities of thionoisochromanone (TIC), a fungi-derivable thionolactone. TIC is the first reported six-membered thionolactone to readily homopolymerize under free radical conditions without the presence of a dormant comonomer or repeated initiation. Even more, the resulting polymer is fully degradable under mild, basic conditions. Computations providing molecular-level insights into the mechanistic and energetic details of polymerization identified a unique S , S , O -orthoester intermediate that leads to a sustained chain-end. This sustained chain-end allowed for the synthesis of a block copolymer of TIC and styrene under entirely free radical conditions without explicit radical control methods such as reversible addition–fragmentation chain transfer polymerization (RAFT). We also report the statistical copolymerization of ring-retained TIC and styrene, confirmed by elemental analysis and energy-dispersive X-ray spectroscopy (EDX). Computations into the energetic details of copolymerization indicate kinetic drivers for ring-retaining behavior. This work provides the first example of a sustainable feedstock for rROP and provides the field with the first six-membered monomer susceptible to rROP, expanding the monomer scope to aid our fundamental understanding of thionolactone rROP behavior. 
    more » « less
    Free, publicly-accessible full text available May 31, 2024
  2. We report the facile synthesis and characterization of 1,6-α linked functional stereoregular polysaccharides from biomass-derived levoglucosan via cationic ring-opening polymerization (cROP). Levoglucosan is a bicyclic acetal with rich hydroxyl functionality, which can be synthetically modified to install a variety of pendant groups for tailored properties. We have employed biocompatible and recyclable metal triflate catalysts – scandium and bismuth triflate – for green cROP of levoglucosan derivatives, even at very low catalyst loadings of 0.5 mol%. Combined experimental and computational studies provided key kinetic, thermodynamic, and mechanistic insights into the cROP of these derivatives with metal triflates. Computational studies reveal that ring-opening of levoglucosan derivatives is preferred at the 1,6 anhydro linkage and cROP proceeds in a regio- and stereo-specific manner to form 1,6-α glycosidic linkages. DFT calculations also show that biocompatible metal triflates efficiently coordinate with levoglucosan derivatives as compared to the highly toxic PF 5 used previously. Post-polymerization modification of levoglucosan-based polysaccharides is readily performed via UV-initiated thiol–ene click reactions. The reported levoglucosan based polymers exhibit good thermal stability ( T d > 250 °C) and a wide glass transition temperature ( T g ) window (<−150 °C to 32 °C) that is accessible with thioglycerol and lauryl mercaptan pendant groups. This work demonstrates the utility of levoglucosan as a renewably-derived scaffold, enabling facile access to tailored polysaccharides that could be important in many applications ranging from sustainable materials to biologically active polymers. 
    more » « less
  3. null (Ed.)